77 research outputs found

    An interferometric technique for B/A measurement

    Get PDF
    An isentropic phase method is described for measuringin vitro the acoustic nonlinearity parameterB/A of several aqueous buffers, protein solutions, lipid oils, and emulsions. The technique relies upon the use of an acoustic interferometer to measure the small changes in sound speed that accompany a rapid hydrostaticpressure change of between one and two atmospheres. Average accuracies of 0.85% are attainable with this method

    Sound Commentary: Reply

    Get PDF

    Report Of The 12th F.V. Hunt Postdoctoral Fellow (1989-1990)

    Get PDF

    Acoustical Society Of America Helmholtz-Rayleigh Interdisciplinary Silver Medal In Physical Acoustics, Biomedical Acoustics, And Engineering Acoustics: Armen Sarvazyan

    Get PDF
    The Silver Medal is presented to individuals, without age limitation, for contributions to the advancement of science, engineering, or human welfare through the application of acoustic principles, or through research accomplishment in acoustics

    Measurement of pressure and assessment of cavitation for a 22.5-kHz intra-arterial angioplasty device

    Get PDF
    This study was performed to understand better the mechanisms of action of an (22.5 kHz) ultrasonic wire catheter device used to remove atheromatous plaque in diseased blood vessels (ultrasonic angioplasty). During a clinical procedure, the wire acts as an acoustic waveguide to transfer acoustic energy from a generator outside the body to the ball tip of the wire, which is inserted in the blood vessel. The acoustic field radiated by the vibrating ball tip (1.5- to 3.0-mm diameter), was mapped in a relatively large (600 L) water tank and compared to the field from a well-characterized simple source. A dipolelike radiation pattern due to the translating ball tip was observed. At low power settings, standing wave effects in a smaller cylindrical volume (200-mm diameter, 350-mm height), which was used to simulate anthropometric dimensions, increase relative to the larger tank measurements. The standing wave ratio is dependent upon the pc characteristics of the medium and the dimensions of the volume, rather than on the absorption at this frequency. At high power-settings of the device, cavitation at the tip of the wire was measured using a 20-MHz passive cavitation detection scheme

    Modeling Of Microbubbles Pushed Through Clots Via Acoustic Radiation Force

    Get PDF
    Previous studies have shown that thrombi, which may completely block the blood flow in a vessel, can be dissolved by ultrasound acting on echo-contrast agent microbubbles. The presumed mechanism is acoustic cavitation, the radial oscillations of the bubbles, which can exert locally large forces on the fibrin ropes that make up the clot matrix. However, the movement of the bubbles through the clot in the absence of flow suggests that acoustic radiation force also plays an important role. Because detailed mechanistic modeling of this process is not available, we present here a heuristic study in which microbubble transit times in gels of various porosities were measured and described by a simplified percolation theory. Results suggest considerations for optimizing the penetration of active microbubbles in sonothrombolysis

    Internal stress wave measurements in solids subjected to lithotripter pulses

    Get PDF
    Semiconductor strain gauges were used to measure the internal strain along the axes of spherical and disk plaster specimens when subjected to lithotripter shock pulses. The pulses were produced by one of two lithotripters. The first source generates spherically diverging shock waves of peak pressure approximately 1 MPa at the surface of the specimen. For this source, the incident and first reflected pressure (P) waves in both sphere and disk specimens were identified. In addition, waves reflected by the disk circumference were found to contribute significantly to the strain fields along the disk axis. Experimental results compared favorably to a ray theory analysis of a spherically diverging shock wave striking either concretion. For the sphere, pressure contours for the incident P wave and caustic lines were determined theoretically for an incident spherical shock wave. These caustic lines indicate the location of the highest stresses within the sphere and therefore the areas where damage may occur. Results were also presented for a second source that uses an ellipsoidal reflector to generate a 30-MPa focused shock wave, more closely approximating the wave fields of a clinical extracorporeal lithotripter

    Guest Editorial: Sono Et Gravitas: The Legacy Of Robert Edmund Apfel

    Get PDF

    A Corrected Mixture Law For B/A

    Get PDF
    A derivation is presented that corrects an expression for the effective acoustic nonlinearity parameter of a mixture of immiscible liquids. The derivation is based upon a mass fraction, rather than volume fraction, formulation

    Medical Diagnostic Ultrasound

    Get PDF
    As early as 250 BCE, captains of ancient Greek ships would drop lead weights overboard to provide an estimate of water depth. They would count until those “sounders” produced an audible thud and in that way measure the propagation time of the falling weight. Even though the practice has given way to other technologies for sounding, one still hears the phrase “to sound something out.” In the 17th century, Isaac Newton became fascinated with sound propagation and was one of the first to describe relationships between the speed of sound and measurable properties of the propagation medium, such as density and pressure. Section 8 of Book 2 of the Principia, for example, is devoted to “the motion propagated through fluids” and includes the proposition that the sound speed is given by the square root of the ratio of the “elastic force” to the density of the medium
    • …
    corecore